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Introduction

Context and rationale of the project

We were brought together by our mutual interest in modelling the crowd dynamics in a

subway wagon. This is a situation we all experience daily while commuting between our

homes and the CRI. And you will see, after reading this report, you will (over)analyze metro

users’ behaviour.

Our first idea was to focus on the individual behaviour of each subway user and their inter-

actions in a wagon. There are many interesting dynamics : people try to avoid each other

while being attracted by comfortable positions, like seats or metal poles. Different parame-

ters could influence these dynamics from the number of available seats to the crowdedness

of the wagon.

We had an other idea regarding the flux of people travelling from one station to another

and how the creation of a new metro line would impact this flux. However, we were more

interested in the individual behaviour of metro users rather than an overall flow over a large

network of stations. Our goal was to design a subway wagon where agent were able to enter,

move and get out. We wanted to get closer to the reality. In order to have an interesting

model, we needed to have a problematic that our model would be able to answer.

Problematic

A subway wagon architecture is something that is not fixed. In Paris, from metro line 1 to

metro line 13, seats and metal bars are not always in the same place. We were interested in

being able to recreate this diversity. Moreover, we have all experienced a crowed versus non

crowed subway trip. This has a very important impact our experience of the subway ride.

Thus, geometry of the wagon and number of agents were things that we wanted to make

vary. In our problematic we wanted to measure something that would be linked to both, so

we could experiment by changing the number of seats and people.

A key element to understand the behaviour of metro users is the presence of attractive objects

(i.e. seats) or repulsive objects (other metro users). This made us reflect on a larger concept

of the users’ comfort. We defined comfort as a value of the cell the agents are on. This

comfort depends on whether or nor there are people too close to them and if they managed
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to reach a seat. Our goal was to model the dynamics of agents evolving in a subway wagon

to study the impact of the geometry of subway (position of seats and metal pole) on the flow

and the final distribution of agents as well as the number of users that were able to find a

comfortable place.

A clear problematic we came up with was : How does the number of seats and agents impact

the comfort of the users over time ?The model we produced was rather the one of a socially

awkward crowd, but that is something you’ll find out in our results section...

Model

We chose to use a cellular automata based model. After some discussion, we found that it

was the best way to implement our idea of the model and enable us to obtain the result

we were expecting, in the amount of time we were given. In addition, there is an extensive

literature on using cellular automaton for crowd simulation. See for example Sarmady et al.,

2014, Klüpfel, 2003, Zhou et al., 2010 or Fu et al., 2014.

This model takes into account the subway wagon design, the attractiveness of seats and metal

poles as favourite spots for metro users, the number of metro users in order to compute the

location of the users over time and their level of comfort (based on whether or not they

reached an attractive point or if they’re at sufficient distance from other users). This will

help us optimize the wagon’s configuration as we experiment.

Figure 1: Interactions between the different components of our model
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In the final model we used for our results, we decided not to include metal bars with their

resting cells (the cells surrounding the metal bar, which are supposed to be more attractive

than the rest of the wagon, but less attractive than the seats). Making our model work with

only one type of attractive cells, the seats, was already challenging. However, implementing

metal bars is a good perspective to get closer to reality.

Our cellular automaton consists of several types of cell.

• Agent (A) cells represent the metro users, they repel each other.

• Wall (W) cells represent obstacles.

• Resting cells (R) are the metro seats, they attract A.

• Cells can also be empty (E).

Dependent variables

• Location of agents over time, for a more qualitative analysis

• Total comfort function. We will define a comfort function that associates to a state of

our system a single value corresponding to the total comfort of the agents, according

to how their wish to sit and to be away from other agents is fulfilled.

Independent variables / parameters

We can consider multiple parameters to test. We will test them in an exploratory phase of

our experiments and then choose which one we want to test systematically.

• Subway wagon disposition (seat and metal bar placement, wagon size).

• Number of people.

• How they enter the wagon.

One important part of our model was the notion of comfort. Indeed, here we defined the

comfort of an agent as the amount of space they have around them and if they are on an
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attractive spot (seats or metal bars). Thus every cell has a comfort value and every agent

is lowering cells’ comfort in its Moore neighbourhood. Thanks to the matrix we computed

in our code, agent were able to spot the most comfortable cell in the wagon and compute

their next position in order to find the fastest way to their new goal. Here is an example of

a wagon we designed. It shows what we just explained, seats have a higher comfort value

compared to resting cells around metal bars. Moreover, the agent has a negative impact on

its environment, thus, another agent will not want to get close to him.

Figure 2: A grid representing a wagon with an agent and its comfort matrix

Dynamics

Moore neigh-

bourhood

Let A be the set of agents and Ai be the agent i of position pti = (xi, yi) at

time t.

Let the matrix G of size n × m with values in {A,W,R,E} represent the

state of our model at a time t.

The model is based on agent reaching a position of highest comfort Cx,y. At

each iteration of our model, agents consider the distance to Cx,y in the 8

cells of their Moore neighbourhood. Then, they move to the cell that has

the smallest distance to the chosen comfortable position.

At each iteration, 4 steps are necessary :

1. We compute the comfort matrix C of size n ×m such that Cx,y is the comfort of the

cell (x, y). C =
∑
i

Fi, where Fi is the comfort field of the cell i, computed as follows:

Consider the cell i of coordinates (xi, yi).

• If i ∈ A is an agent of position xi, yi.

Let Ωi = {(xi + a, yi + b) | (a, b) ∈ J−1; 1K} be the Moore Neighborhood of i. If

(x, y) ∈ Ωi, Fxy takes the value of the following matrix MA centred on (xi, yi).
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MA =

 KA3 KA2 KA3

KA2 KA1 KA2

KA3 KA2 KA3

 With KA1 < KA2 < KA3 < 0

Else, Fxy = 0

• If i ∈ R is a rest cell of position (xi, yi).

Fxy =

{
Kr if x, y = xi, yi

0 else
with Kr < 0

2. Each agent i find its goal gi as the cells of maximal comfort, using distance between

the agent and the cell as a tie-breaker. gi = argmax
x,y

(Cxy, d(x, y))

3. Each agent i find its wanted new position p?i .

We have Ωi be the Moore Neighborhood of i and M the set of cell agents can step on.

At each step, we define the set of possible positions as P = Ωi ∩M .

We then find the wanted new position of the agent Ai : p?i = argmin
p∈P

d(p, i), with

d(p, i) the Manhattan distance between p and i.

4. In case of conflict (ie. ∃ Ai, Aj such that p?i = p?j), we choose randomly and with

equiprobability which agent is able to have its wanted position as its next position.

Total comfort

For the purpose of experiment, we define the total comfort Ctot =
A∑
i

Cxi,yi .

This value has a flaw in the sense that you can’t compare it for two situation with a different

number of agents : no matter the comfort of the system, if there are more agents, the value

will get bigger (not necessarily in the positive direction).

To deal with this situation, we should have normalised this value to an average comfort

Ĉ = 1
n

A∑
i

Cxi,yi , with n the number of agent.

Expected dynamics

Those dynamics should prevent the subway user to fall into local optimums, because it has

an overview of the entire wagon. We should be able to define rest cells with a lower constant

Kr and agents should only consider them when all the seats are used or at least next to

another agent that decrease its comfort.
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In the example below of expected dynamics, the rest cells grouped by two represent seats

and have a high constant Kr whereas the two rest cells in the centre of the wagon are metal

pole with a lowered constant Kr.

Two agents enter alternately the wagon, the first one will choose the closest seat. As a result

of the negative comfort field of this agent, the comfort of the seat just next to it decreases,

causing the second agent to enter a further away seat.

Figure 3: Expected dynamics when two agents enter the wagon. Agents prefer seats than

closer metal pole. Reads from left to right then up to down.

Implementation

Architecture

In comparison to other projects during this week, ours was less centered around equations

but particularly coding heavy.

To make everything more tidy and ease collaborative coding, we chose to create a base

object-oriented architecture for our project (see figure 4).

Data structure

One challenge we had was the data structure to store the state of our system.

On one hand, we sometimes want to know in an efficient way if there is a block at a specific

position, which can be done with a 2d array of the size of the wagon. On the other hand, we
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Figure 4: Architecture of our implementation of our model.

often want to iterate over a specific set of cell (for example all agents), which is much faster

if we keep a list of all agents and their position.

We chose to do a mix of those two possibilities : we keep a lists containing all agents, which

are objects that store their position by themselves. We store the rest cells in a similar way.

However, the comfort is defined for each cell, which is why we need to store it in an array.

Walls are also stored in an array, because if we never need to iterate over all walls, we often

need to know if there’s a wall at a specific position.

Visualisation

Having some sort of graphical representation of the state of our system was really important

for debugging. On one hand, we really wanted our code to integrate neatly in python

notebooks, because those environment are perfect to explore and discuss the results of our

model, one the other hand, we needed the ability to render the visualisation into a video to

share our results at the end of the week.

Our class PLOT MANAGER generates code for vector image in SVG format which can then

either be rendered by the browser in a jupyter notebook or rendered to an image thanks to

the package HTML 2 IMAGE (html2image 2022).
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Results

Constants

For the following simulation, we set :

• MA =

 −2 −3 −2

−3 −5 −3

−2 −3 −2


• Kr = 5

MA being the negative impact of an agent on his Moore neighbourhood and Kr the comfort

value associated to our seats to make them attractive.

We were able to simulate our model reliably for a wide variety of initial conditions, and to

record the total comfort of the agents as the sum of each agent’s cell comfort over time.

Simulations

Simulation A : Video 1

Simulation B : Video 2

We decided on a wagon’s design and kept it for the entire length of our experimenting. Its a

6× 12 grid. As for the seats, we decided to study two difference scenarios. Our problematic

was to see how the number of seats and the number of users impacted the overall comfort

of the agents over time. To do so, in one wagon configuration we had 10 seats for 10 agents

and in the other 4 seats for 10 agents. Our comfort function collected the values of the total

comfort of the users over time. The total comfort is the sum of the comfort value of each

user depending on whether they are not too close to others and if they are on a seat. We

plotted this function for each simulation and came to the obvious conclusion that when there

are less seats than agents, the total comfort value decreases.

When there are more seats, one can also notice that it takes more iterations to find an

equilibrium. This is due to the fact that as long as there are free seats left, seated agents

while still change their goals because they have become more attracted to those seats. It

takes more time for everyone to be happy with their position, because there are much more

https://www.youtube.com/watch?v=BrO5Rz7XB9o
https://www.youtube.com/watch?v=pdABKALtTVc
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Figure 5: Total comfort of the 10 agents over time for a metro wagon with (A) 10 seats and

(B) 4 seats. Agents enter the wagon gradually during the 6 first iterations

attractive options and they are very sensitive to the presence of other agents around them.

Figure 6 is an example of a simple simulation. Two agents are entering through the left

door. They will have the same goal until frame 4. Then agent 2 reduces the attractiveness

of the seat for agent 1. He finds a new goal : the closest free seat. But now (frame 5) he

is very close to agent 2, so the attractiveness of the seat he’s on decreases. This is why in

frame 6 both agent 2 and 1 move towards the closest seat with the highest comfort value.

In frame 7, now that agent 1 is far away, agent 2 will prefer going back to his first seat.
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Figure 6: Example of dynamics with two agents for 3 seats.

Discussion and conclusion

We succeeded in modelling a subway wagon with seats and agents moving around. In some

simulations we manage to obtain the stable state that we wanted where nobody is moving

anymore.

We introduced randomness to solve conflict and it has an important impact on our simu-

lation. In fact, the same initial condition will never lead to the same final distribution of

agent. This is problematic in case of reproducibility. However, in reality, no wagon dynamic

is the same, so it might not be such an issue. One just needs to run the simulation many

times to obtain an average behaviour.

This model has a lot of perspectives due to numerous bug we couldn’t fixed within the time

limit.

Indeed, when an agent is seated, he still is influenced by the negative comfort value of the

Moore neighbourhood of other users. When another agent is too close, the agent will leave

his seat because another free seat has become more attractive. This can sometimes lead to

infinite oscillations. We could fix his position once he reaches a seat, but that goes against

a dynamical system.

As you can observe in the video 3 the same initial condition as the simulation A lead to an

infinite oscillation :Video 1.

Moreover, agents can’t spot if another agent has the same goal as them. Thus, they are

https://www.youtube.com/watch?v=d7zqBpuqpcc
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wasting time on unreachable goals. They also are not aware of their close neighbourhood.

They only focus on their goal and the nearest cell to the goal. But they are not intelligent

pathfinders. They would get stuck behind a wall whose position is close to the goal and

would not know how to move around it.

Overall, this project has been a great learning opportunity and the freedom we were given

motivated us to produce something fun and nice.

Links

Our code can be found on our github page.

More information as well as our daily reports and poster can be found on our CRI project

page.
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